Incredible Product Video for Patek Philippe Watch
This is the first time I have heard of Patek Philippe Watches and I must say I am extremely impressed with the process. The engineering that goes into this beautiful piece and how they display it in the video is simply amazing. Unfortunately this watch is targeted to the super rich and this beautiful video will circulate around the internet for about a week and disappear into existence as modern day watches like the Apple Watch take over the public.
Click Here for Product Video for the New $2.75M Patek Philippe Watch is Most Incredible
NUS Engineering team makes artificial muscles
NUS Engineering team makes artificial muscles which can lift loads 80 times its weight, a first in robotics
From National University of Singapores Newshub:
Invention paves the way for designs of efficient, biomimetic artificial muscles and contributes towards development of green robots
A research team from the National University of Singapore’s (NUS) Faculty of Engineering has created efficient artificial, or “robotic” muscles, which could carry a weight 80 times its own and able to extend to five times its original length when carrying the load – a first in robotics. The team’s invention will pave the way for the constructing of life-like robots with superhuman strength and ability.
In addition, these novel artificial muscles could potentially convert and store energy, which could help the robots power themselves after a short period of charging.Led by Dr Adrian Koh from NUS’ Engineering Science Programme and Department of Civil and Environmental Engineering, the four-member team has been working on the project since July 2012.
Robots – current limitations
Robots, no matter how intelligent, are restricted by their muscles which are able to lift loads only half its own weight – about equivalent to an average human’s strength (though some humans could lift loads up to three times their weight). Artificial muscles have been known to extend to only three times its original length when similarly stressed. The muscle’s degree of extendability is a significant factor contributing to the muscle’s efficiency as it means that it could perform a wider range of operations while carrying heavy loads.
Super, artificial muscles
Explaining how he and his multidisciplinary team managed to design and create their novel superhuman muscles, Dr Koh said, “Our materials mimic those of the human muscle, responding quickly to electrical impulses, instead of slowly for mechanisms driven by hydraulics. Robots move in a jerky manner because of this mechanism. Now, imagine artificial muscles which are pliable, extendable and react in a fraction of a second like those of a human. Robots equipped with such muscles will be able to function in a more human-like manner – and outperform humans in strength.” In order to achieve this, Dr Koh and his team have used polymers which could be stretched over 10 times their original length. Translated scientifically, this means that these muscles have a strain displacement of 1,000 per cent. A good understanding of the fundamentals was largely the cause of their success, Dr Koh added. “We put theory to good use. Last year, we calculated theoretically that polymer muscles driven by electrical impulse could potentially have a strain displacement of 1,000 per cent, lifting a load of up to 500 times its own weight. So I asked my students to strive towards this Holy Grail, no matter how impossible it sounded,” he said.Though they could only achieve a modicum of their target, it is a first in robotics. For his contributions, Dr Koh was awarded the Promising International Researcher Award at the 3rd International Conference on Electromechanically-Active Polymer Transducers and Artificial Muscles in June 2013, held in Zürich, Switzerland. The Award recognises young researchers from outside Europe, who have made significant contributions in the field of electromechanically-active polymers, and display promise to successful career in the field.
Green robots
“Our novel muscles are not just strong and responsive. Their movements produce a by-product — energy. As the muscles contract and expand, they are capable of converting mechanical energy into electrical energy. Due to the nature of this material, it is capable of packing a large amount of energy in a small package. We calculated that if one were to build an electrical generator from these soft materials, a 10kg system is capable of producing the same amount of energy of a 1-ton electrical turbine” Dr Koh said.This means that the energy generated may lead to the robot being self-powered after a short period of charging – which is expected to be less than a minute.
The next step
Dr Koh said they are still beefing up their muscles. They will also be filing a patent for their success formula of materials and right degree of electric impulses. And in about three to five years, they expect to be able to come out with a robotic arm, about half the size and weight of a human arm which can wrestle with that of a human being’s — and win.Powerful artificial muscles need not only be used in robots, said Dr Koh. “Think of how efficient cranes can get when armed with such muscles,” said Dr Koh.The research team plans to work further with researchers from Materials Science, Mechanical Engineering, Electrical & Computer Engineering, as well as Bioengineering to create robots and robotic limbs which are more human-like in both functions and appearance.
[via nanowerk] [photo by Erik Charlton]
The Open Hand Project: A Low Cost Robotic Hand (Indiegogo Campaign)
What is it? The Open Hand Project is an open source project with the goal of making robotic prosthetic hands more accessible to amputees. The Dextrus hand is the realization of this goal, it’s a robotic hand that can be put together for well under £650 ($1000) and offers much of the functionality of a human hand.
Who’s it For? The Dextrus hand is for anyone who wants an advanced robotic hand. This could be an amputee who wants a little more than a metal hook, a researcher who’s looking into control systems for telepresence robots or perhaps a hobbyist who is making a humanoid robot.
Boston Dynamics didn’t only introduced the WildCat today. They also shared informations about Atlas and the LS3 aka Big Dog. Atlas - our beloved anthropomorphic robot - is now able to operate on rough terrain:
The video shows Atlas balancing as it walks on rocky terrain and when pushed from the side. The balance and control system places the feet and swings the arms and upper body to stay upright. The controller uses inertial, kinematic and load data from Atlas’s sensors. Atlas is being developed by Boston Dynamics with funding from DARPA’s M3 program. For more information visit www.BostonDynamics.com
Robots at Work and Play
Advancements in robotics are continually taking place in the fields of space exploration, health care, public safety, entertainment, defense, and more. These machines — some fully autonomous, some requiring human input — extend our grasp, enhance our capabilities, and travel as our surrogates to places too dangerous or difficult for us to go. Gathered here are recent images of robotic technology at the beginning of the 21st century, including robotic insurgents, NASA’s Juno spacecraft on its way to Jupiter, and a machine inside an archaeological dig in Mexico. [32 photos]































- interactive
- interaction
- installation
- design
- led
- light
- art
- technology
- projectionmapping
- projectmapping
- robotics
- ui
- mobile
- projection
- interactivedesign
- lightdesign
- apple
- web
- 3d
- ux
- userinterface
- lightart
- robot
- artinstallation
- touchscreen
- application
- app
- webdesign
- touch
- motion
- responsive
- adobe
- multitouch
- future
- robots
- drone
- photoshop
- productdesign
- ledinstallation
- lightsculpture
- video
- user experience
- iphone
- creative
- interactivelight
- digitalart
- motiondesign
- ar
- 3dprinting
- responsivedesign
- augmentedreality
- drones
- kinetic
- data
- development
- kinect
- microsoft
- display
- immersive
- process
- painting
- timelapse
- dronerobotics
- 3dprojection
- ios
- vr
- virtualreality
- earth
- ai
- device
- user interface
- engineering
- laser
- lightpainting
- kineticsculpture
- lightinstallation
- touchinstallation
- animation
- programmableleds
- graffiti
- interactions
- neon
- performance
- leapmotion
- watch
- mobiledesign
- pixel
- environment
- exoskeleton
- interactiveenvironment
- sound
- lcd
- social
- leds
- lukew
- artlight
- patterns
- internet
- carui
- November 2011 128
- December 2011 65
- January 2012 25
- February 2012 27
- March 2012 33
- April 2012 31
- May 2012 16
- June 2012 32
- July 2012 20
- August 2012 37
- September 2012 24
- October 2012 34
- November 2012 31
- December 2012 6
- January 2013 21
- February 2013 11
- March 2013 10
- April 2013 35
- May 2013 45
- June 2013 10
- July 2013 49
- August 2013 33
- September 2013 40
- October 2013 57
- November 2013 31
- December 2013 28
- January 2014 86
- February 2014 49
- March 2014 24
- April 2014 40
- May 2014 6
- June 2014 9
- July 2014 1
- August 2014 34
- September 2014 30
- October 2014 45
- November 2014 21
- December 2014 6
- January 2015 5
- February 2015 17
- March 2015 18
- April 2015 14
- May 2015 1
- June 2015 10
- July 2015 4
- August 2015 1
- October 2015 11
- March 2016 4
- December 2016 18
- September 2017 6
- October 2017 13
- November 2017 5
- June 2018 8
- July 2018 2
- November 2018 7
- February 2019 8
- March 2019 6
- July 2019 1
- August 2019 1
- October 2019 1
- July 2020 5
- November 2020 9
- December 2020 1
- January 2021 1
- April 2021 1
- May 2021 9
- June 2021 3
- August 2022 3
- May 2023 2
- September 2023 1
- May 2025 6